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Stability of flow past a cylinder: Energy budget of eigenmodes
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SUMMARY

Global linear stability analysis of the flow past a circular cylinder at the onset of primary wake instability
is carried out. The real and imaginary parts of the most unstable eigenmode, responsible for vortex
shedding, are very similar but associated with a spatial shift in the vortex structures. This shift results
in the convection of vortices that are observed in the unsteady flow, which is actually a consequence of
global absolute instability. The kinetic energy density, associated with the most unstable eigenmode, is
studied. At the onset of the instability the energy density of the disturbance field is found to be stronger in
the far wake compared with the near wake. With increase in Re the region where the disturbance is strong
moves upstream closer to the cylinder. However, the maximum value of the kinetic energy density of
the disturbance lies outside the recirculation zone even for Re upto 100. A linearized mechanical energy
equation for the time evolution of the kinetic energy density of the disturbance is utilized to examine
the energy budget of the most unstable eigenmode at various Re. It is found that the most significant
contribution to the growth rate of the disturbance arises from the transfer of the energy due to the strain
rate of the base flow to the perturbation. The stabilizing effect of the viscous dissipation increases with
increase in Re, but saturates for Re beyond ∼70. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow past a cylinder looses stability at Re∼47 [1–3]. The Reynolds number is defined as
Re=�UD/�, where �, U, D and � are the fluid density, free-stream speed, diameter of the
cylinder and coefficient of viscosity of the fluid, respectively. Various researchers in the past have
utilized global linear stability analysis (LSA) to study the primary instability of the wake [3–7]. It
is well known that this instability of the flow, which sets in via a Hopf bifurcation, is an example
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534 S. MITTAL

of global absolute instability and is responsible for the von Karman vortex shedding. In this case
there are stationary perturbations (unstable eigenmodes) that grow with time. This is in contrast
to the global convective instability, in which case there exists a traveling perturbation that grows
with time.

The notion of absolute/convective instability was originally developed for parallel flows. In a
parallel flow an absolute instability can be viewed as a convective instability by an appropriate
change of the frame of reference and vice versa. Thus, the notion of absolute/convective instability
acquires physical significance when the underlying Galilean invariance is broken. For nonparallel
flows, the notion of absolute/convective instability can be extended via a local analysis, which is
based on parallel flow theory. A detailed discussion of the absolute/convective instability concepts
from the point of view of local analysis of hydrodynamic flows is presented in the review paper
by Huerre and Monkewitz [8]. Recently, Mittal and Kumar [7] proposed a method to carry out a
global convective instability analysis for a nonparallel flow [7].

In view of the above discussion, we describe two approaches to the LSA of nonparallel flows:
local analysis of the assumed parallel flow and global nonparallel flow theory. In a local analysis,
one assumes the flow profile at a station of interest in the flow field to be parallel and determines its
stability characteristics via Rayleigh or Orr–Sommerfeld equation [9]. The resulting instability, if
it exists, may be absolute or convective in nature. A local instability, however, does not necessarily
result in a global instability. Linear stability theory can also be applied to the entire nonparallel
flow [7].

In this paper the global LSA of the flow past a cylinder is carried out. The focus is on the global
absolute instability. In the remainder of this paper the absolute/convective instability should be
interpreted in the global sense, unless stated otherwise. An energy equation for the evolution of the
kinetic energy density of the disturbance field is developed from the linearized disturbance equation
(LDE). Since the most unstable eigenmodes are complex in nature the energy equation is written
for a general complex disturbance. For this purpose, the energy equation presented by Drazin [10]
is generalized for a complex disturbance. The equation is further worked out for the case when
the disturbance field corresponds to the most unstable eigenmode from the LSA of the flow. By
integrating the equation for the kinetic energy density over the domain, a relation for the growth
rate of the disturbance is derived, which shows the contributions from the various mechanisms.
These mechanisms are: the convection of the disturbance by the base flow, energy transferred from
the strain rate field of the base flow to the perturbation, work done by the perturbation pressure
gradient and viscous dissipation of energy.

Some of the questions that we attempt to address in this paper are as follows. With respect to the
recirculation region, where does the maximum kinetic energy density occur for the most unstable
eigenmode? What is the relative role of the various mechanisms that lead to the instability? It is
well known that the vortex shedding arises due to an absolute instability. From the point of view
of local analysis, it is well established that a global mode emerges out of a much larger region
of convective instability. Therefore, the vortices are seen to convect downstream following the
onset of primary instability of the wake. However, from the point of view of global analysis, it is
not clear as to why a global mode, that is absolutely unstable, leads to the convection of vortices
during vortex shedding?

The incompressible flow equations, in the velocity pressure form, are solved via a stabilized
finite element method. The stabilized formulation is based on the streamline-upwind/Petrov–
Galerkin (SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG) stabilization techniques [11].
Several element-level integrals are added to the Galerkin formulation to stabilize the computations
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against spurious numerical oscillations. The basic Galerkin formulation is unstable for convection-
dominated flows and does not allow one to use equal-order interpolation velocity–pressure elements.
The formulation for the LSA with the stabilized finite element method, being used here, was
proposed in one of our earlier works [12]. The LSA involves the solution to an eigenvalue problem.
A subspace iteration procedure [5] in conjunction with shift-invert transformation is utilized.

2. THE GOVERNING EQUATIONS

2.1. The incompressible flow equations

The equations governing the flow of an incompressible fluid are:

�

(
�u
�t

+u·∇u−f
)

−∇·r=0 on �×(0,T ) (1)

∇ ·u=0 on �×(0,T ) (2)

Here, �, u, f and r are the density, velocity, body force and the stress tensor, respectively.
For a Newtonian fluid the stress tensor is given as r=−pI+2�e(u), where e is the strain rate
given as e(u)= 1

2 ((∇u)+(∇u)T). Here, p and � are the pressure and coefficient of the dynamic
viscosity, respectively. These equations are accompanied with appropriate boundary conditions on
the velocity and stress and an initial condition on the velocity.

2.2. Global LSA

We decompose the unsteady flow, (u, p) as a combination of the steady part and disturbance:
u=U+u′ and p= P+ p′. Here, (U, P) represent the steady-state solution obtained by solving
Equations (1) and (2) without the unsteady terms. u′ and p′ are the perturbation fields of the
velocity and pressure, respectively. Substituting for this decomposition in Equations (1)–(2) and
subtracting from them, the equations for steady flow, one obtains the following equations for the
disturbance fields:

�

(
�u′

�t
+u′ ·∇U+U ·∇u′+u′ ·∇u′

)
−∇·r′ =0 (3)

∇·u′ =0 (4)

In the equation above r′ represents the stress tensor due to the perturbed solution (u′, p′). We
further assume that the disturbances are small and drop the nonlinear term. This leads to the LDE
of the form:

�

(
�u′

�t
+u′ ·∇U+U ·∇u′

)
−∇·r′ =0 (5)

∇·u′ =0 (6)

For conducting the global LSA of the flow (U, P) we assume the disturbance field of the following
form:

u′(x, t)= û(x)e�t , p′(x, t)= p̂(x)e�t (7)
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This allows us to conduct a global, LSA of a general, nonparallel but steady flow. Substituting this
form of the disturbance in Equations (5)–(6) we get:

�(�û+ û·∇U+U ·∇û)−∇· r̂=0 (8)

∇ ·û=0 (9)

Here, � is the eigenvalue of the fluid system and governs its stability. In general, �=�r+ i�i,
where �r and �i are the real and imaginary parts, respectively. Similarly, the eigenmode û(x) is
ûr(x)+ iûi(x), where ûr(x) and ûi(x) are the real and imaginary parts, respectively. The steady-state
solution (U, P) is associated with an unstable mode if the rightmost eigenvalue has a positive real
part. The boundary conditions for (û, p̂) are the homogeneous versions of the ones for (U, P).

2.3. The linearized mechanical energy equation for the disturbance field

Note that, in general, the eigenmodes for the velocity and pressure fields are complex. This leads
to a complex field for the velocity and pressure perturbations: (u′(x, t), p′(x, t)). Let (u′, p′) and
(u′, p′) be one such conjugate pair. These fields, independent of each other, satisfy the LDE given
by Equations (5)–(6). We define the specific kinetic energy of the disturbance e′(x, t) as:

e′(x, t)= 1
2u

′(x, t) ·u′(x, t) (10)

We take the dot product of Equation (5) with u′ and add it to the dot product of u′ with Equation (5)
written for the fields (u′, p′). This leads to the equation for the evolution of e′ and is given as:

�
�e′

�t
=−�U ·∇e′−�u′u′ :e(U)−(u′ ·∇p′+u′ ·∇p′)−�(∇u′ :∇u′−�e′) (11)

In this equation the term on the left-hand side represents the time rate of change of the kinetic energy
density of the disturbance. The first term on the RHS, −�U ·∇e′, represents the convection, by the
base flow, of the kinetic energy of the disturbance. The second term on the RHS, −�u′u′ :e(U), is
the energy extracted by the disturbance from the base flow. The third term, −(u′ ·∇p′+u′ ·∇p′),
is the rate of work done by the pressure disturbance, whereas the last term corresponds to the work
done by the viscous forces.

Recall that the disturbance field can be written in terms of eigenmodes as given by Equation (7).
Therefore, the specific kinetic energy of the disturbance field can be expressed as

e′(x, t)= ê(x)e2�rt (12)

where ê(x)= 1
2 û(x) ·û(x). From Equation (12) we note that

�e′

�t
=2�re

′ (13)

We recall two observations that can be made regarding the local time evolution of the specific
kinetic energy from this equation. First, it shows that the energy of an unstable global mode grows
everywhere with twice the growth rate of the disturbance. Second, the time rate of kinetic energy
of a global mode has the same spatial structure as that of the energy distribution itself. Substituting
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this decomposition in the energy equation, Equation (11), leads to

2�rê=−U ·∇ê− ûû :e(U)− 1
� (û·∇ p̂+ û·∇ p̂)+�(�ê−∇û :∇û) (14)

For future reference, we rewrite this equation as

�e′

�t
=
(

�e′

�t

)
convection

+
(

�e′

�t

)
transfer

+
(

�e′

�t

)
pressure

+
(

�e′

�t

)
viscous

(15)

where (�e′/�t)convection=−U ·∇e′, (�e′/�t)transfer=−u′u′:e(U), (�e′/�t)pressure=−1/�(u′ ·∇p′+u′ ·
∇p′) and (�e′/�t)viscous=−�(∇u′ :∇u′−�e′) represent the contributions to the time rate of change
of kinetic energy density of a disturbance field from various mechanisms. Next, we integrate the
energy equation over the domain of the flow, �. We assume that � is fixed for all t and define
Ê=∫� êd�. For an unbounded flow the boundary condition at the outflow corresponds to setting
the flow variables to their free-stream values. However, for a finite domain this may lead to large
inaccuracies. In the present work, the stress vector at the outflow boundary is assigned as zero
value. In view of this we rearrange Equation (14) and integrate it over the domain. This leads to:

�r=− 1

2Ê

∫
�
U ·∇êd�− 1

2Ê

∫
�
ûû :e(U)d�+ �

�Ê

∫
�
(e(û) :e(û))d� (16)

For future reference, we rewrite this equation as

�r=(�r)convection+(�r)transfer+(�r)viscous (17)

where

(�r)convection=− 1

2Ê

∫
�
U ·∇êd�, (�r)transfer=− 1

2Ê

∫
�
ûû :e(U)d�

and

(�r)viscous= �

�Ê

∫
�
(e(û) :e(û))d�

are the contributions to the growth rate from the various mechanisms. We note that the pressure
does not contribute to the overall growth rate of the disturbance. In addition, it can be shown
that (�r)convection results in a nonzero value only if ê does not vanish at the outflow boundary.
Equation (17) can also be utilized to recover the value of growth rate, �r, from the eigenmodes
(û, p̂).

3. THE FINITE ELEMENT FORMULATION

3.1. The incompressible flow equations

Consider a finite element discretization of the domain, �, into subdomains �e, e=1,2, . . . ,nel,
where nel is the number of elements. Based on this discretization let Sh

u and Sh
p be the finite

element trial function spaces for velocity and pressure, respectively, and Vh
u and Vh

p be the
weighting function spaces. The stabilized finite element formulation of Equations (1)–(2) is written
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as follows: find uh ∈Sh
u and ph ∈Sh

p such that ∀wh ∈Vh
u, qh ∈Vh

p∫
�
wh ·�

(
�uh

�t
+uh ·∇uh−f

)
d�+

∫
�
e(wh) :r(ph,uh)d�

+
∫

�
qh∇ ·uh d�+

nel∑
e=1

∫
�e

1

�
(�SUPG�uh ·∇wh+�PSPG∇qh)

·
[
�

(
�uh

�t
+uh ·∇uh−f

)
−∇·r(ph,uh)

]
d�e

+
nel∑
e=1

∫
�e

�LSIC∇ ·wh�∇ ·uh d�e=
∫

�h

wh ·hh d� (18)

Here, �g and �h are complementary subsets of the boundary � on which Dirichlet and Neumann-
type boundary conditions are assigned as follows:

u=g on �g, n·r=h on �h (19)

where n is the unit normal vector to �h . In the variational formulation given by Equation (18),
the first three terms and the right-hand side constitute the Galerkin formulation of the problem. It
is well known that the Galerkin formulation is unstable with respect to the advection operator as
the cell Reynolds number (based on the local flow velocity and mesh size) becomes larger. Also,
not all combinations of the velocity and pressure interpolations are admissible in the Galerkin
formulation. Elements that do not satisfy the Babuska–Brezzi condition lead to oscillatory solu-
tions and sometimes to no solution at all. To give stability to the basic formulation, a series of
element-level integrals are added. The first series of element-level integrals are the SUPG and
PSPG stabilization terms added to the variational formulations [11]. The SUPG formulation for
convection-dominated flows was introduced by Hughes and Brooks [13] and Brooks and Hughes
[14]. The Petrov–Galerkin term for Stokes flows, to admit the use of equal-order interpolations for
velocity and pressure without producing oscillations in the pressure field, was proposed by Hughes
et al. [15]. Tezduyar et al. [11] proposed a formulation using the SUPG and PSPG stabilizations
for finite Reynolds number flows. The second series of element-level integrals are the stabiliza-
tion terms based on the least squares of the divergence-free condition on the velocity field. The
definitions for �PSPG and �SUPG are given by the following relations based on their values for the
advection and diffusion limits.

�SUPG=�PSPG=
(

1

�2ADV
+ 1

�2DIF

)−1/2

(20)

where

�ADV= he

2‖uh‖ , �DIF= (he)2

12�
(21)

Here, he is the element length and various definitions have been used by researchers in the past.
Mittal [16] conducted a systematic numerical study to investigate the effect of high aspect ratio
elements on the performance of the finite element formulation for three commonly used definitions
of he. In this work we use the definition based on the minimum edge length of an element. The

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:533–547
DOI: 10.1002/fld



STABILITY OF FLOW PAST A CYLINDER 539

coefficient �LSIC is defined as

�LSIC=
(

1

�2ADV
+ 1

�2DIF

)−1/2

(22)

where

�ADV= he‖uh‖
2

, �DIF= (he)2(‖uh‖)2
12�

(23)

The implicit method used in the present work allows us to seek steady-state solutions by simply
dropping the unsteady terms in the governing equations.

3.2. The linear stability equations

Let Ŝ
h
u and Ŝ

h
p be the finite element trial function spaces and V̂

h
u and V̂

h
p the weighting function

spaces for the perturbations in the velocity and pressure fields, respectively. The finite element

formulation for the perturbation equations, (8) and (9), is given as: find ûh ∈Ŝ
h
u and p̂h ∈Ŝ

h
p such

that ∀ŵh ∈V̂
h
u and q̂h ∈V̂

h
p∫

�
ŵh ·�(�ûh+Uh ·∇ûh+ ûh ·∇Uh)d�+

∫
�
e(ŵh) :r( p̂h, ûh)d�

+
∫

�
q̂h∇·ûh d�+

nel∑
e=1

∫
�e

1

�
(�SUPG�Uh ·∇ŵh+�PSPG∇q̂h)

·[�(�ûh+Uh ·∇ûh+ ûh ·∇Uh)−∇·r( p̂h, ûh)]d�e

+
nel∑
e=1

∫
�e

�LSIC∇·ŵh�∇·ûh d�e=0 (24)

The stabilization coefficients for the LSA are given by the same definition as defined in Equations
(20)–(23) except that they are based on the steady-state velocity field, Uh . Equation (24) leads to
a generalized eigenvalue problem of the form AX−�BX =0, where A and B are nonsymmetric
matrices. In this study we use the shift-invert transformation in conjunction with the subspace
iteration method [17] to track the eigenvalue with the largest real part.

4. PROBLEM SETUP

The cylinder resides in a computational domain whose outer boundary is a rectangle. The radius
of the cylinder is 1 unit; time is nondimensionalized using the free-stream speed and the radius of
the cylinder. A schematic of the problem setup is shown in Figure 1. All the boundaries are located
at a distance of 50D from the center of the cylinder, where D is the diameter of the cylinder. The
finite element mesh, used in this work, consists of 40432 quadrilateral elements and 40920 nodes.
The structure of the mesh is the same as the one used in our earlier studies (for example, [12]).
The following boundary conditions are applied. Free-stream value is assigned to the velocity at
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Figure 1. Flow past a circular cylinder: schematic of the computational domain and the boundary conditions.

the upstream boundary. At the downstream boundary, a Neumann-type boundary condition for the
velocity is specified which corresponds to zero stress vector. On the upper and lower boundaries
a ‘slip-wall’ boundary condition is employed, i.e. the component of velocity normal to and the
component of stress vector along these boundaries are prescribed a zero value. For the LSA the
boundary conditions are the homogeneous versions of the ones used for determining the steady-state
solutions.

5. RESULTS

5.1. The steady flow

First, the steady flow is computed for various Re by dropping the time-dependent terms from
Equations (1)–(2). Excellent agreement is observed with the results from other researchers. For
example, at Re=100 the length of the bubble from the present computations is 6.65D and the
drag coefficient is 1.0651. The values from Fornberg [18] are 6.6D and 1.072, respectively. Gajjar
and Azzam [19] reported the values to be 6.64D and 1.079, respectively. The computations by
Fornberg [18] and Gajjar and Azzam [19] have been carried out for one half of the cylinder.

5.2. Linear stability analysis

Once the steady-state solution is available, at each Re, the global stability analysis is carried out.
Figure 2 shows the variation of the real part of the eigenvalue with Re. The flow becomes absolutely
unstable at Re∼47. The St at the onset of vortex shedding is found to be 0.1168. The real and
imaginary parts of the most unstable eigenmode for Re=42, 70 and 100 are shown in Figure 3.
The eigenfunctions are normalized such that the Euclidean norm of the vector formed by the
values of velocity and pressure, of the real as well as imaginary components at all nodes, are unity.
The dark shades of gray denote the negative values, whereas the lighter shades represent positive
values. The y component of velocity and the vorticity fields of the most unstable eigenmode is
symmetric about the wake centerline. However, the x component of velocity and the pressure
fields of the eigenmode is skew-symmetric. The symmetry properties of the steady flow are exactly
the opposite. For example, the vorticity field of the steady flow is skew-symmetric about the
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Figure 2. Linear stability analysis for flow past a circular cylinder: real part of the rightmost eigenvalue
for various Re (in solid line). The contributions to the growth rate from convection, energy transfer and

viscous mechanisms are also shown.

wake centerline. The superposition of the steady and disturbance field, therefore, does not exhibit
any symmetry about the centerline. In that sense, the instability being considered is a symmetry
breaking bifurcation [20].

From Figure 3 it can be observed that the real and imaginary parts of the eigenmodes are
structurally very similar. However, the vortex structures seem to be separated by a spatial phase.
This phase separation or the spatial stagger in the vortex structures coupled with the imaginary
part of the eigenvalue is responsible for the convection of vortices in the primary instability of the
wake. Recall that the primary instability of the wake is a consequence of an absolute instability.
The convection of vortices in a flow driven by an absolute instability is observed in several other
situations and may be caused by the same phenomenon observed here. It can also be observed from
Figure 3 that as the Re increases the disturbance field tends to become stronger and closer to the
cylinder and the region of maximum relative disturbance shifts upstream. For example, compared
with Re=70, the disturbance field in the far downstream region at Re=100 is quite weak.

5.3. Kinetic energy density of the disturbance field

The real and imaginary parts of the most unstable eigenmode are utilized to compute the kinetic
energy density of the disturbance field via Equation (10). The energy fields for various Re are
shown in Figure 4. The recirculation bubble for the steady flow at each Re is also shown in the
same figure. The results are in good agreement with the energy distribution shown by Gianetti and
Luchini [21] for Re=50. These figures show the spatial structure of the disturbance field. The
observations made from the eigenmode regarding the strength of the disturbance field are much
clearer from these pictures. At Re=42 the disturbance field is strong in the far wake and very
weak in the near wake. With increase in Re the region in which the disturbance field is strong
moves closer to the cylinder. At Re=100, the energy of the disturbance is large in the near wake
and very small in the far wake. Figure 4 shows the x-location of the point where the energy of the
disturbance field is maximum for various Re. The variation of the length of recirculation region
of the steady flow with Re is also shown. While the bubble length increases linearly with Re, the
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Figure 3. Linear stability analysis for flow past a circular cylinder: real (left) and imaginary (right) parts
of the most unstable eigenmode for: (a) Re=42; (b) Re=70; and (c) Re=100. The various panels show
the velocity components, pressure and vorticity fields. Darker shades of gray represent negative values,

whereas the lighter shades show positive values.

location of maximum kinetic energy density moves closer to the cylinder with increase in Re. It
decreases quite rapidly with Re for low values of Re and then appears to settle at the value that
remains constant with Re. Interestingly, in all the cases shown the maximum kinetic energy density
is achieved outside the recirculation region. Gianetti and Luchini [21] also found that the location
of the maximum kinetic energy moves downstream with decrease in Re. A similar prediction was
made by Goujon-Durand et al. [22] via a nonlinear analysis.
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Figure 4. Linear stability analysis for flow past a circular cylinder: kinetic energy density field
associated with the most unstable eigenmode for various Re. Also shown in the black line
is the stagnation streamline for the steady flow at each Re. Darker shades of gray represent

negative values, whereas the lighter shades show positive values.

5.4. Contribution to growth rate from various mechanisms

Equations (16) and (17) can be utilized to determine the contribution to the growth rate of the most
unstable eigenmode from various mechanisms. Figure 2 shows the result for this computation at
various Re. As expected, (�r)viscous is negative for all Re reflecting the stabilizing effect of viscous
terms. In fact, the stabilizing effect increases with Re, for Re<70, and then remains virtually
constant for larger Re. The term due to the convection of the disturbance energy by the base
flow has a mild stabilizing effect for Re<60, approximately. For larger Re, as the disturbance
becomes weaker at the outflow boundary, its contribution becomes insignificant. (�r)transfer is the
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Figure 5. Linear stability analysis for flow past a circular cylinder: x-location of the point where the
kinetic energy density of the most unstable disturbance field achieves maximum for various Re. Also
shown is the variation of the bubble length with Re and the location of the maximum of the contribution,

to the energy growth rate, from various mechanisms.

only contributor to the global instability of the flow and is positive for all the Re investigated. The
destabilization related to the transfer of energy due to the strain rate of the base flow increases
with increasing Re.

5.5. Spatial distribution of the rate of increase of kinetic energy density

Equation (13) shows that the local rate of increase of kinetic energy density for a global mode has
the same spatial structure as the energy density distribution itself. We utilize Equation (15) to find
the spatial distribution of the contribution of various mechanisms to the growth of kinetic energy
density. Figure 6 shows the contributions from the transfer, convection, pressure and viscous-related
mechanisms for Re=50 and 100. Dark shades of gray reflect a negative growth rate, whereas the
lighter shades of gray denote a positive growth rate of local kinetic energy density. The mechanism
related to the transfer of energy due to the strain rate of the base flow is the main contributor to the
growth of kinetic energy density. With increase in Re, the location at which the maximum growth
rate occurs, moves upstream. This can also be seen from Figure 5. While the global effect of the
convection mechanism is stabilizing, it does have a local destabilizing effect in certain regions of
the flow. Similarly, even though the pressure term has no contribution toward the global change
in kinetic energy, there are regions in the flow where the local contributions are nontrivial. The
viscous terms are responsible for the stabilizing effect everywhere in the flow domain.

6. CONCLUSION

Global LSA of the flow past a circular cylinder has been carried out. The flow undergoes a global
absolute instability at Re∼47 via a symmetry-breaking Hopf bifurcation. The steady flow and its
most unstable eigenmode have complementary symmetry properties. For example, the vorticity
field of the steady flow is skew-symmetric about the wake centerline while it is symmetric for
the disturbance field. Consequently, the superposition of the steady flow and the most unstable
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Figure 6. Linear stability analysis for flow past a circular cylinder: contributions to the local rate of
increase of kinetic energy density of the disturbance from transfer, convection, pressure and viscous-related
mechanisms (please see Equation (15)) for (a) Re=50 and (b) Re=100. Darker shades of gray represent
negative values, whereas the lighter shades show positive values. Also shown is the stagnation streamline

for the steady flow at each Re.

eigenmode leads to an asymmetric flow: the familiar von Karman vortex shedding. The real and
imaginary parts of the unstable eigenmode, responsible for vortex shedding, look quite similar.
However, there is a spatial stagger in the vortex structures of the two fields. This stagger is
responsible for the convection of vortices that are observed in the unsteady flow, which is otherwise
a consequence of an absolute instability.
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At the onset of instability, the kinetic energy density of the disturbance field is found to be
stronger in the far wake and very weak in the near wake. With increase in Re the region where
the disturbance is strong moves upstream, closer to the cylinder. It is found that the maximum
value of the kinetic energy density of the disturbance lies outside the recirculation zone even for
Re upto 100.
A linearized mechanical energy equation has been utilized to study the contribution of the

various mechanisms toward the growth of the kinetic energy density of the disturbance field at the
local as well as the global level. It is shown that the pressure does not play any role in the global
kinetic energy evolution of the disturbance. The terms due to the convection of the disturbance by
the base flow have a stabilizing effect for low Re. Their effect becomes insignificant for larger Re
as the disturbance field becomes weak at the outflow boundary. As expected, the viscous terms
have a stabilizing effect. The mechanism related to the transfer of energy due to the strain rate of
the base flow is the one that is found to be responsible for the primary wake instability.

The spatial distribution of the local growth rate of the kinetic energy density of the most unstable
disturbance is studied. Although the overall global effect of the convection of the disturbance by
the base flow is stabilizing, it does contribute to instability locally in certain regions of the flow.
Similarly, the pressure term is found to contribute to the growth and decay of the local kinetic
energy density in some areas of the flow domain.

A new tool has been developed to study the energy budget of disturbance fields. It can be applied
to other flows to increase the understanding of the mechanisms responsible for instabilities.
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